
Vis Comput (2016) 32:111–121
DOI 10.1007/s00371-014-1059-6

ORIGINAL ARTICLE

Depth incorporating with color improves salient object detection

Yanlong Tang · Ruofeng Tong ·
Min Tang · Yun Zhang

Published online: 20 January 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Detecting salient objects in challenging images
attracts increasing attention as many applications require
more robust method to deal with complex images from the
Internet. Prior methods produce poor saliency maps in chal-
lenging casesmainly due to the complex patterns in the back-
ground and internal color edges in the foreground. The for-
mer problem may introduce noises into saliency maps and
the later forms the difficulty in determining object bound-
aries. Observing that depth map can supply layering infor-
mation andmore reliable boundary,we improve salient object
detection by integrating two features: color information and
depth information which are calculated from stereo images.
The two features collaborate in a two-stage framework. In
the object location stage, depth mainly helps to produce a
noise-filtered salient patch, which indicates the location of
the object. In the object boundary inference stage, bound-
ary information is encoded in a graph using both depth and
color information, and then we employ the random walk to
infer more reliable boundaries and obtain the final saliency
map. We also build a data set containing 100+ stereo pairs to
test the effectiveness of our method. Experiments show that
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1 Introduction

Saliency detection is a process that computer imitates HVS
(human visual system) to understand scenes in images.When
human observes an image, he/she always focus on a sub-
set of the whole image. Saliency detection is a mecha-
nism to filter out irrelevant information and highlight most
noticeable foreground regions. Driven by different appli-
cations, saliency detection can be divided into two cate-
gories: fixation prediction and salient object detection. The
former aims at predicting locations in a scene that human
eyes may fixate and could be used in active gaze con-
trol [3,4], robot localization [48], recognition [44] and adver-
tising [43]. A series of works [5,19,23,25,27,45] develop
various models for fixation detection. The latter aims to auto-
matically identify the most salient object, which is mainly
applied in object segmentation [14,22,29], object recogni-
tion [2], image retrieval [7,8,26,33] and image editing [37].
Many works [6,11,20,28,31,35,36,47,51] devote to detect-
ing salient object in a scene more accurately and efficiently.
However, recent work [51] states that previous methods may
be not robust enough in challenging cases, as illustrated in
Fig. 1.

Previous monocular methods often utilize 2D features,
such as color, orientation to measure saliency, without intro-
ducing depth feature. Lang et al. [30] point out that there
is slight difference between human visual saliency and 2D
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Fig. 1 Salient object detection in challenging images, which contain complex patterns in the background and internal color edges in the foreground.
a Original image. b RC [11]. c PCA [36]. d HS [51]. e Ours. f Ground truth

saliency metric, and human always focuses on the depth
information when evaluating saliency in a scene. Stere-
opsis not only attracts ever-increasing attention in stereo
image/video editing and analysis [15,16,38,39,50], but also
attracts more and more attention in saliency detection, as it
supplies additional depth cue. There are many attempts in
saliency detection by taking depth into consideration. In the
fixation prediction field, Lang et al. [30] study the discrep-
ancies in the eye fixation data when human viewing 2D/3D
scenes and propose amodel to improve the saliency detection
with depth priors. Fang et al. [17] improve the saliency detec-
tion for stereo images using four features (color, luminance,
texture and depth) extracted from DCT coefficients. Ciptadi
et al. [12] measure saliency with the constructed 3D lay-
out and shape features from depth maps. In the salient object
detection literature, Niu et al. [40] define saliency using depth
information computed from stereo images, and their results
show that stereo saliency is a useful component to previous
visual saliency analysis. However, they do not consider the
color feature which is very important in saliency analysis.
In this paper, we combine color and depth feature to signif-
icantly improve saliency detection for challenging scenes.
Desingh et al. [13] propose a learning-based model to fuse
depth information captured by depth sensor and color infor-
mation to measure saliency. This model improves salient
region detection in indoor settings, in which the ground
truth contains multiregions instead of a single unambiguous
object.

In this work, we aim at salient object detection. Differ-
ent from works [13,40], we introduces both depth and color

features to detect a single unambiguous object in a scene.
We use depth information in a different way basing on the
characteristics of salient object [28]:

1. The salient object is always different from its surrounding
context.

2. The salient object is most probably placed near the center
of an image.

3. A salient object is located in a limited depth range in a
scene (Our observation).

4. A salient object always has a well-defined closed bound-
ary.

In our saliency model, we combine color and depth fea-
tures to detect salient object. We notice that the depth map
computed by stereo matching [49] can provide depth layer-
ing and objects’ shape information. The former can help to
locate salient objects more accurately and the latter can be
used to control and refine the border of salient objects.

Our salient object detection includes two stages: object
location and object boundary inference. Both stages combine
color and depth features for better results according to the
4 characteristics of salient objects. The detection result is
given by a saliency map, in which the intensity (normalized
to [0, 1]) of each pixel denotes the probability of belonging to
the salient region, and the final saliency quality is evaluated
by precision rate and recall rate. Experiments show that our
results can achieve high precision rate and recall rate at the
same time.
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Fig. 2 Framework of our method. The left color image and left depth
mapwhich is precomputed from stereo images are considered as inputs.
In the salient object location stage, we sample a few seeds from the
extracted salient patch to identify the object location. Firstly, a color
saliency map is produced from left color image based on color con-
trast observation. Then, we calculate the depth saliency map from the

left depth image, according to the depth layering information. The two
maps are finally combined to produce a fused saliencymap, fromwhich
the salient patch is correctly extracted. In the object boundary inference
stage, with the predetermined seeds, the random walk [21] is employed
to produce the final saliency map, in which plausible object boundary
is given

The contribution of this work is that we propose a model
that improves salient object detection by incorporating both
depth and color information. Our method is divided into
two independent stages: object location and object boundary
inference. In the first stage, we produce a noise-free salient
patch by fusing the color saliency map and depth saliency
map. In the second stage, we define a graph using both depth
and color features, and then extend the random work [21] to
inferring more reliable object boundary.

2 Methodology

2.1 Overview

In thiswork,wemainly explore howcolor and depth informa-
tion work together to produce better saliency maps, because
depthmap supplies additional layering information andmore
reliable boundary. In this work, the depth map is produced
from stereo images that describe the same scene by stereo
matching [49], and our method consists of two stages: object
location and object boundary inference. Both stages use color
and depth information to improve accuracy. The workflow is
shown in Fig. 2.

• In the object location stage, a noise-filtered salient patch
is produced for sampling a few object seeds. This salient
patch is generated from two initial saliency maps, which
are generated by applying color and depth information,
respectively.

• In the object boundary inference stage, we represent the
image as a rectangular plane with different thermal con-
ductivity at different positions.With the object seeds’ tem-
perature (saliency value) known as 1 and image corners’
temperature assumed to be 0, our task is to infer the tem-
perature of the rest positions, which is formulated as a
Combinatorial Dirichlet problem.

2.2 Object location

We locate the salient object by sampling a few seeds in a
small patch detected as part of the salient object. Firstly,
an initial rough estimate of the 2D position (in the form of
salient patch) of the object is given using color feature. Then,
object’s depth location (salient depth) in depth domain is
estimated. Finally, the 2D position estimation is refined by
the estimated depth location.

2.2.1 2D location

Inspired by the 1st characteristic of salient object, we use
color contrast to locate the salient object. We first com-
pute the saliency using the spatially weighted region contrast
[9–11]:

The input color image is firstly segmented into regions
using the graph-based method [18]. When measuring the
weight of each edge in the segmentation, we consider both
color difference in L∗a∗b∗ space and depth difference.
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Then, the color distance between two regions rk and ri is
defined as:

Dr(rk, ri ) =
nk∑

s=1

ni∑

t=1

f (ck,s) f (ci,t )D(ck,s, ci,t ) (1)

where f (ck,s) is the probability of the sth color ck,s among
all nk colors in the kth region rk . D(ck,s, ci,t ) is the color
difference in L∗a∗b∗ space.

Finally, The spatially weighted region contrast saliency is:

S(rk) = ws(rk)
∑

rk �=ri

e
Ds(rk ,ri )

−σ2S w(ri )Dr(rk, ri ) (2)

where Dr(rk, ri ) measures the region color contrast, w(ri )
is a weighting term that emphasizes color contrast to bigger

regions, e
Ds(rk ,ri )

−σ2S refers to the spatial weight which weights
more if the region distance Ds(rk, ri ) is smaller, andws(rk) is
the center bias term, indicating that regions around the center
are more likely to be salient.

S(rk) is further improved using non-salient regions prior
and color space smoothing operation. Border regions are
finally assigned the saliency value 0, as they are typically
non-salient background regions, and this operation helps
to improve the precision of the saliency map. Color space
smoothing, means to replace the saliency value of each color
by the weighted average of the saliency values of similar col-
ors. This operation can reduce quantization artifacts and can
uniformly highlight the entire salient object. More details of
the two improving operations are elaborated in Sections 4.3
and 3.2 of the work [9].

The saliency map produced by the color contrast method
gives an initial estimation of the salient object’s location (See
Fig. 3b).We select pixelswith saliencyvalues ranking top1%
in this map as the salient patch. Observing from challenging
images, we find that the selected patch may contain a lot
of undesired background parts, thus we aim to further filter
out background noises using the depth information in the
following steps.

Fig. 3 Object location estimation. a Original image. b Initial location
estimation (color saliencymap). cDepth saliencymask (map) dRefined
location (fused saliency map) using depth. e Seed points extracted from
salient patch

2.2.2 Depth location

Each pixel of the extracted candidate patch has a 3D position,
P(x, y, d). According to the 3rd characteristic, we give an
estimation of where the object locates in the depth domain.
In this estimation step, the center prior proposed in the 2nd
characteristic is used as follows:

ds = f (P) =
N∑

i=1

φi di (3)

φi = e−σ Pi

∑N
j=1 e

−σ Pj
(4)

Pi =
√

(xi − xc)2 + (yi − yc)2 (5)

where P = (X,Y, D) is an N × 3 vector indicating the
positions of pixels in the candidate patches. X = (x1, x2, . . . ,
xN )T , Y = (y1, y2, . . . , yN )T , D = (d1, d2, . . . , dN )T .
(xc, yc) is the image center. Free parameter σ equals 1.0.
This depth location ds is named salient depth.

2.2.3 Refined location

To remove background noises in the initial salient patch, we
give a saliencymodel in the depth domain based on the salient
depth:

Sd(i, j) = e− ‖d(i, j)−ds‖1
λ2 (6)

where d(i, j) is the depth value of location (i, j) and λ is a
regulation parameterwith default value 0.3.According to this
model, saliency value decreases when the location deviates
from the salient depth. Although this model can highlight the
whole object and darken most part of the background, it also
introduces undesired noises into background regions at the
similar depth level (see Fig. 3c).

To further filter out the undesired background noises, we
propose amultiplication operation on the color saliency map
and depth saliency map.

Sp(i, j) = Sc(i, j) × Sd(i, j) (7)

Thus, the salient patch (Fig. 3d) contains much less noise
and can be correctly extracted, then we sample 1–5 seeds
(see Fig. 3e) from the patch.

2.3 Object boundary inference

With the location of the object seeds, a rough estimate of
object location is given, but the boundary of the object is still
unknown. Following the 4th characteristic of salient object,
we consider the shape information (specially the boundary
information) when estimating salient object. As we aim to
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measure the object saliency not segment objects, it is not nec-
essary to give a strong border of the object. Thus in this stage,
the object boundary is inferred in a probabilistic way, mean-
ing that locations with sharp jumps in probabilities (saliency
values) are more likely to be boundaries.

Furthermore, depth and color information are combined to
infer the border of the salient object. Then a diffusionmethod
(it is a special case of diffusion [21]) is applied to producing
the final saliencymap, which also displays the inferred object
boundary. Our boundary inference is based on the theory of
heat diffusion,which is elaborated as follows.The seedpoints
can be treated as a heat sourcewith fixed temperature value 1,
and the four corner positions (belongs to salient object with
tiny probability) have fixed temperature value 0. The image
is represented as a kind of inhomogeneous mediumwith var-
ious thermal conductivities at various positions. With these
fix-value seeds, a steady heat map is obtained, which can
represent the final saliency map. This problem has been for-
mulated as a Combinatorial Dirichlet problem [21], and the
key of this problem is to define an inhomogeneous medium
with the object boundary information implicitly encoded.

2.3.1 Boundary information encoding

An instinctive idea of defining this inhomogeneous medium
is to assign different thermal conductivity values at different
positions. Positionswith lower thermal conductivity aremore
probably considered as the boundary that interdicts the con-
duction of heat. We use local difference to define local ther-
mal conductivity. Specially, we represent the whole image as
a four-connected and undirected graph form G = (V, E). V
indicates pixels and E represents the weights between adja-
cent nodes. wi j refers to the weight which denotes the simi-
larity between vi and v j . The feature of each node is a vector
that is composed of color and depth features. Instead of using
direct L2 form to measure the vector difference, we define
the feature difference in the following form [see Eq. (7)].
In this metric, both depth discontinuity and color difference
are important to represent the similarity of pixel pairs, and
the former weights much more. For example, large color dif-
ference may indicate internal textures or edges, which are
actually not object boundaries.

wi j = e− ‖d fi−d f j ‖2+β‖c fi−c f j ‖2
α2 (8)

where i and j are adjacent pixels (nodes), and df i , cf i are the
depth and color feature, respectively. For each pixel, depth
feature refers to the depth value and color feature is the pixel
value in L∗a∗b∗ space after the color quantization. α and β

are free parameters with experimentally selected value 0.1.
The ‖ · ‖2 is normalized to [0, 1].

2.3.2 Infer boundary by diffusion

After obtaining the object’s seeds in Sect. 2.2, we set their
saliency to 1 and corner points’ saliency to 0, and our final
step is to decide the saliency of unknown positions in the
graph. This problem can be formulated as a steady source
heat diffusion, with the medium pre-defined in the previ-
ous step. Further, this problem is actually a specific case of
the combinational Dirichlet problem [21], as the heat field
(saliency map) is steady. Thus, our task is to decide a har-
monic function that satisfies the Laplace equation:

�S(i, j) = 0 (9)

with boundary (seeded positions and corner positions) values
1 and 0.

The harmonic function is formulated as the minimization
of a Dirichlet integral:

D[S] = 1

2

∫

�

|∇S|2d� (10)

In our case, the combinatorial Laplace matrix is defined
as:

Li j =
⎧
⎨

⎩

di if i = j
−wi j if vi and v j are adjacent nodes
0 otherwise

(11)

Following the derivation in [21], the Dirichlet integral can
be further formulated as:

D[S] = 1

2
ST LS = 1

2

∑

ei j∈E
wi j (Si − S j )

2 (12)

According to the saliency values, vertices are divided and
reorganized into two groups SY and SN , which are seed and
non-seed points, and Eq. 11 can be decomposed as follows:

D

[
SY
SN

]
= 1

2

[
STY STN

] [
LY B
BT LN

] [
SY
SN

]

= 1

2
(STY LY SY + 2STN BT SY + STN LN SN ) (13)

By taking the partial of D

[
SY
SN

]
with respect to SN , we

obtain:

LN SN = −BT SY (14)

The saliency values SN of all points in the graph can be
calculated by solving the above linear equation system, and
the final saliency map S is obtained.
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3 Experiments and evaluation

Data collection. To validate our approach, we build a data
set of 103 stereo pairs (left and right images). As each image
of the pair represents the same scene, we measure saliency
on the left image. The depth (disparity) maps are precom-
puted using stereomatching [49]. The ground truth is a binary
map containing a region of interest. We present a statistical
analysis of the distribution of salient objects’ location in our
data set (Fig. 4a), which is also performed in the work [41]
(Fig. 4b) to evaluate data set bias. Both data set shows cen-
ter bias of the distribution. This is because human naturally
frames an object of interest near the center of the image when
taking pictures, as is stated in [41]. Other public data sets
such as MSRA [34] and SSB [12] also show such center
bias. Part of this collection is from the Internet and the rest
are shot by us in real scenes. In general, challenging images
are widely existed in the Internet, and they usually contain
complex structures in salient regions or the background, e.g.,
small-scale high-contrast patterns in the background [51].

Fig. 4 Location distribution of salient objects. a RGBD data set [41].
b Our data set. Both data sets show the center bias of salient object
distribution

In this paper, we test the effectiveness of our saliency detec-
tion in challenging images.

Quantitative evaluation. In the salient object detection lit-
erature, different measures from fixation prediction are pro-
posed to evaluate saliency maps. Our method is evaluated
by precision–recall curve and F-measure, which are widely
used standard evaluation metrics [1,11,51]. The F-measure
is formulated as:

Fβ = (1 + β2) · precision · recall
β2 · precision + recall

(15)

In this measure, the range of β2 is set to (0, 1.0), because
recall rate is not as important as precision rate in saliency
detection [34]. We set β2 = 0.3 in our experiments.

We compare our method with state-of-the-art monocular
methods. Like [32], we do not intend to emphasize that our
approach outperforms state-of-the-art monocular methods as
we use additional depth information. Rather, the goal of the
comparison is to verify that additional depth information can
greatly improve salient object detection. The target methods
to be compared with ours are chosen based on three consid-
erations: (1) State-of-the-art methods: HS [51], PCA [36],
GBMR [52], BMS [54] and RC2 [9], which appeared in 2013
and2014. (2)Methods (RC [11] andCB[28]) that outperform
previous ones on the same data set. (3) Other classic meth-
ods (SF [42], LR [46], HC [11], FT [1], LC [53]and SR [24])
with high citation rate. To reduce errors, we use the authors’
original codes to implement corresponding methods.

The quantitative evaluation results are shown in Fig 5.
The precision–recall curve demonstrates that our method can
achieve high precision and recall rate at the same time, which
indicates that our color + depth based method greatly outper-
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Fig. 5 Quantitative evaluation by comparing with state-of-the-art monocular methods. a Precision–recall curve. b F-measure
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Fig. 6 Visual comparison of saliency maps produced by various methods. aOriginal image. bDepth map. c SF [42]. d LR [46]. e FT [1]. fCB [28].
g RC2 [9]. h BMS [54]. i GBMR [52]. j PCA [36]. k HS [51]. l Ours. m Ground truth

formsmethodswithout introducing depth information.When
the precision rate equals 0.9, our method can achieve recall
rate 0.72, while other methods can achieve only 0.5 at most.
On the other hand, if the recall rate is fixed at 0.9, the pre-
cision rate of our method reaches 0.76, while the maximum
precision rate of other methods is only 0.5. The F-measure
also shows the advantages of our method. Especially, when
the threshold is greater than 100, our method significantly
exceeds others. In Fig. 6, visual comparisons are given,which
vividly demonstrate the advantages of our approach.

Necessity of both stages. To demonstrate that both stages of
the proposed pipeline are necessary, we illustrate the perfor-
mance of initial, intermediate and final results on our data set,
which is shown in Fig. 7. Initial results are produced by the
initial color saliencymethod—RC2 [9]; intermediate results,
indicated by Sp(i, j) in Eq. (7), are generated from the first
stage—Object location; final results are produced by Stage 1
+ Stage 2. The precision–recall curves in Fig. 7 demonstrate
that both stages make some improvement.
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Fig. 7 The performance of initial (RC2), intermediate (Stage 1) and
final (Stage 1 + Stage 2) results. It shows the necessity of both stages,
which both make some improvement
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Fig. 8 Comparison of each color saliencymethod (BMS,CB, . . ., SR) and corresponding color–depth saliencymethod (BMS_D,CB_D, . . .,SR_D).
RC2_D is the proposed pipeline and it achieves the best performance

Scalability. The proposed framework is scalable, and can
be reconstructed by integrating other color saliency models.
To demonstrate the effectiveness of the proposed method,
we replace RC2 [9] by other color saliency methods, and
perform additional experiments. The results are shown in
Fig. 8. The precision–recall curve shows that each color–
depth pipeline (BMS_D, CB_D, . . ., SR_D) can significantly
improve the corresponding color-only method (BMS, CB,
. . ., SR). And the proposed pipeline (RC2_D) achieves the
best performance among all the color–depth pipelines. The
reason for the excellent performance of color–depth pipeline
lies in that each color method provides some location cue
of the salient object (Stage 1), which can be used to infer
more reliable object boundaries of the salient object (Stage
2). We propose RC2_D in this work because it provides the
best location cue (most parts of the extracted salient patch
are located within the salient object) and achieves the best
performance.

4 Limitations

Currently, salient object detection is mainly applied in Inter-
net (monocular or binocular) images. Our method can deal
with stereo (binocular) images, which widely exist in the
Internet, such as Flickr. Recently, a few works [12,13,41]
explore how to improve saliency detection using captured
depth and an RGBD data set [41] captured by Kinect
is released for salient object detection in the work [41].
Although, our pipeline is not designed for Kinect 3D point
cloud data, we applied our method on this data set, by simply
treating the 3D data as a depth image. Results of our method
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Fig. 9 Comparison results on the RGBD data set [41]
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Fig. 10 Failure example of multiple salient objects detection

and other methods (LS [12], SVR [13], RGBD [41]) which
are designed for Kinect 3D data are illustrated in Fig. 9.

In Fig. 9, it shows that LS [12], SVR [13] and our method
have comparable performance, while RGBD [41] outper-
forms the others. Reasons for our unsatisfying performance
include: First, our method is designed for detecting single
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unambiguous salient objet, while a series of images in RGBD
data set [41] contain multiple salient objects. In this case, our
method fails to produce good saliency map, as is shown in
Fig. 10. Second, different from the other three methods, our
method is not designed for Kinect 3D point cloud data. We
only use relative depth to measure saliency while other fea-
tures, such as surface normal, are not introduced. Also, the
proposed algorithm needs further modification to be applied
on Kinect depth data.

5 Conclusions and future work

We present a two-stage framework for detecting salient
objects in challenging images and each stage combines color
and depth features, which is designed based on the character-
istics of salient objects. In the first stage, to locate the salient
object, we combine color and depth features for robust-
ness, as color contrast-based methods are usually vulner-
able in challenging scenarios, which may introduce back-
ground noises in the salient patch. In the second stage, the
salient object is entirely highlighted through inferring plau-
sible object boundaries. The inference process is formulated
as a randomwalk problem on a graph, which is defined using
both depth and color information. We also construct a stereo
image data set for evaluating salient object detection in chal-
lenging images. This data set contains 100+ image pairs and
each pair has only one salient object. We test our method
on this data set and the evaluation results show that the pro-
posed color-plus-depth based method significantly improves
salient object detection compared to previous color-based
methods, which indicates the usefulness of depth in salient
object detection.

In the future, we will further explore how to improve
saliency detection by combining depth and other features.
Also, this work utilizes inaccurate depth information which
is acquired by time-consuming computation from stereo
images. We will further attempt to use the accurate depth
information captured by sensors (such as Microsoft Kinect)
to measure saliency, like the work [41]. As current pipeline
is not suitable for multiple salient objects detection (Fig. 10),
we will design new RGBD pipeline for this task in the
future.
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